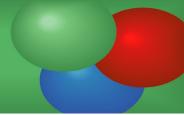

Silage Production and Utilization in the USA

Kenneth F. Kalscheur, USDA-ARS
Luiz Ferraretto, University of Wisconsin-Madison

U.S. Dairy Forage Research Center
USDA - Agricultural Research Service

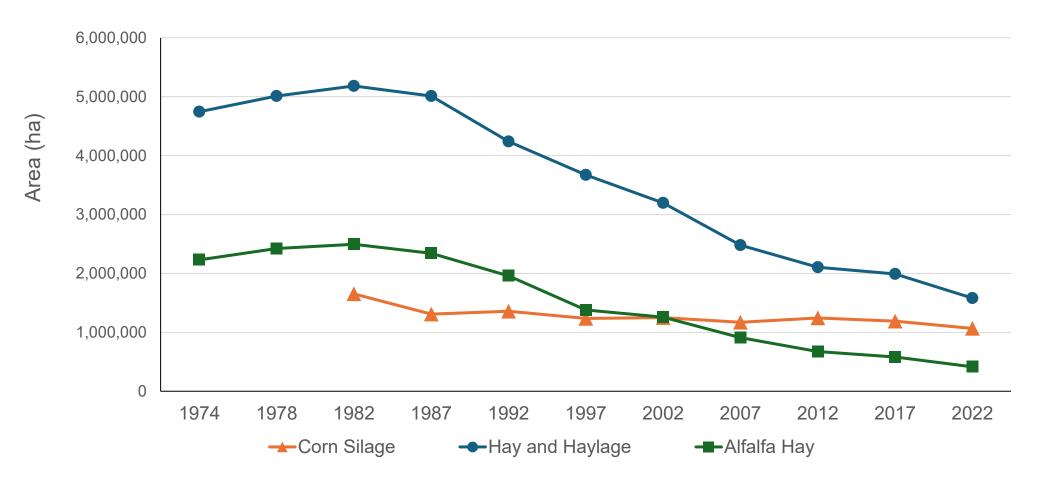
Outline



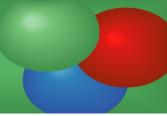
1. Silage utilization in the U.S.

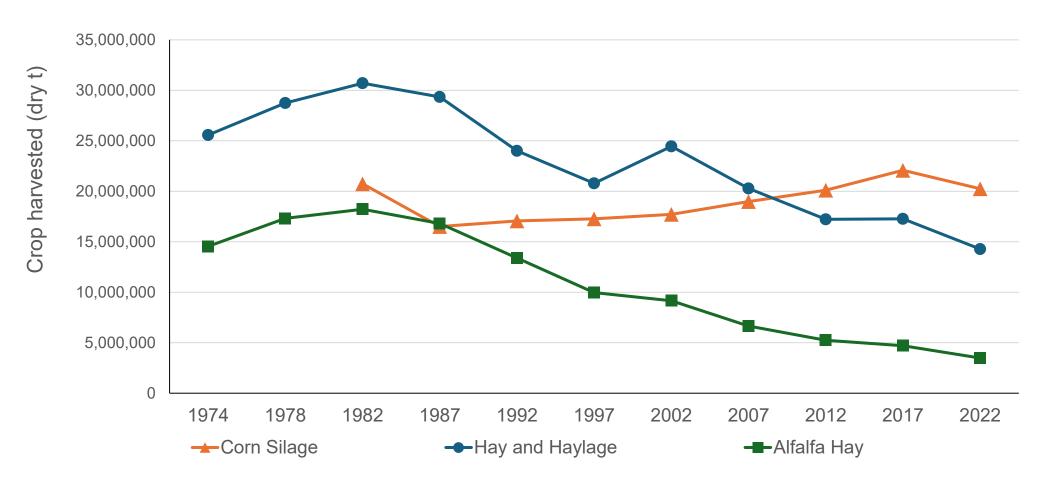
2. Formulation of silages into lactating dairy cow diets

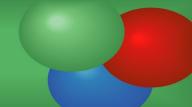
3. Limitations and opportunities



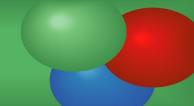
 Choice of forages for silage in the dairy ration vary depending on climate, soil types and growing conditions of that region.


 What types of forages for silages are commonly used in the U.S.?

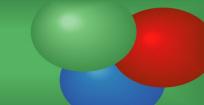

Land Use for Silage and Hay Crops on U.S. Dairy Farms


Martin et al. (2017); NASS (2025)

Crop Harvested for Silage and Hay Crops on U.S. Dairy Farms

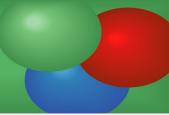


Martin et al. (2017); NASS (2025)


• In much of the U.S., corn silage is the dominant silage used in dairy cow rations. And it's growing. Why?

- In much of the U.S., corn silage is the dominant silage used in dairy cow rations. And it's growing. Why?
 - Higher biomass yield
 - Higher energy forage
 - Management less harvesting time and labor, more consistent quality

- 2nd most popular
 - Alfalfa silage
- Dry climates of southwest U.S.
 - Forage sorghum silage
- Additional silage crops
 - Grass silages
 - Annual grain silages
 - Cover crop silages

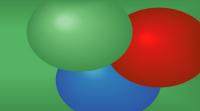

2. Increasing the use of silages in lactating dairy cow diets

Why is silage important in dairy cow diets?

- Silages are critical for providing necessary fiber for dairy cow diets
 - Provides energy
 - Regulates the intake of feed
 - Stimulates chewing, saliva production, and rumination
 - Increases buffering of the rumen
 - Regulates rumen function
 - Provides a source of precursors for milk fat

Additional reasons to increase silage in diets of lactating dairy cows

- 1. There is a need to increase animal productivity to meet the increasing demand for animal-sourced food.
- Increase utilization of feeds that are not in direct competition with human food, monogastric feed, and biofuel feedstock.
- 3. Lower the cost of the diet.


How can we increase silage utilization?

Methods to improve NDF digestibility to increase silage utilization in dairy cow diets

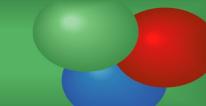
- Physical treatments
 - · Chopping, shredding, grinding, pelleting, steaming
- Biological treatments
 - Enzymes, inoculants, yeast, fungi
- Chemical treatments
 - Acids, hydrolyzing alkalis
- Genetic technologies
 - Variety selections available to producers

Adesogan et al. 2019. Symposium Review: Technologies for improving fiber utilization. J. Dairy Sci. 102:5726-5755.

Inclusion of high-quality alfalfa silage in dairy cow diets

Experiment materials and methods

- 48 Holstein cows (24 primiparous, 24 multiparous)
- Randomized complete block design
 - 2-week common covariate diet
 - Followed by 8-week treatment diet
- Cows milked 3 × per day and individually fed in a tie-stall barn
- High quality alfalfa silage was included to the base diet at 0, 6, 12, and 18% of the diet (DM basis) concentrate feedstuffs



Diets

		Forag	ge %	
Ingredient (% of DM)	50%	56%	62%	68%
BMR corn silage	40	40	40	40
3 rd cut alfalfa silage	10	10	10	10
4 th cut alfalfa silage	0	6	12	18
High moisture corn	17	17	17	17
Soybean meal	9.3	6.2	3.1	0
Expleller SBM	2.7	4.8	6.9	9.0
Roasted soybeans	2.0	2.0	2.0	2.0
Soybean hulls	15	10	5	0
Blood meal	0.70	0.97	1.23	1.50
Urea	0.39	0.26	0.13	0
Vit/Min + limestone	2.95	2.80	2.65	2.50

Nutrient composition

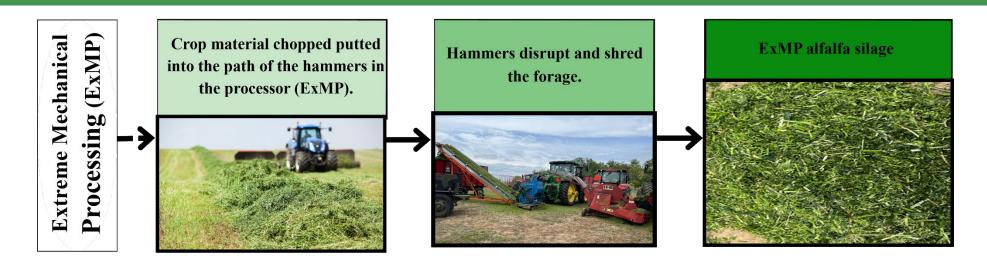
	Forage %					
Nutrient, % of DM	50%	56%	62%	68%		
DM, % of diet	47.8	45.2	43.1	40.7		
СР	16.8	17.0	17.1	17.2		
aNDF	31.1	30.0	29.0	27.9		
Forage NDF	19.2	21.2	23.2	25.2		
Starch	27.6	27.6	27.6	27.6		
EE	2.93	3.07	3.20	3.33		
Ash	7.38	7.52	7.54	7.82		

Intake

		Fora		Contrast		
Item	50%	56%	62%	68%	SEM	P ^a
DMI, kg/d	26.3	26.5	25.4	24.9	0.37	L
NDFI, kg/d	8.18	7.95	7.37	6.80	0.12	L
Forage NDF, kg/d	5.06	5.60	5.89	6.16	0.09	L

 $^{^{}a}L$ = Linear response (P<0.05); Q = Quadratic response (P<0.05).

Lactation performance


		ge %		Contrast		
Item	50%	56%	62%	68%	SEM	P^{a}
Milk, kg/d	43.7	43.0	43.3	42.5	0.74	NS
Fat, %	3.35	3.76	3.72	3.90	0.07	L
Fat, kg/d	1.48	1.61	1.62	1.65	0.04	L
Protein, %	3.02	3.03	3.01	2.99	0.02	NS
Protein, kg/d	1.32	1.31	1.30	1.27	0.02	LT
MUN, mg/dL	14.2	13.7	13.5	13.5	0.39	NS
ECM, kg/d	43.0	44.2	44.5	44.3	0.81	NS
ECM/DMI	1.63	1.69	1.75	1.83	0.03	L

 $^{^{}a}L$ = Linear response (P<0.05); LT = Linear trend (P<0.10); Q = Quadratic response (P<0.05).

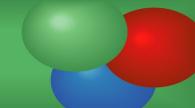
Processing of forages to increase utilization

Extreme mechanical processing (ExMP) of forages

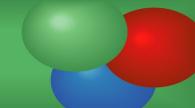
Montes et al. (2025)

Extreme mechanical processing (ExMP) of forages

CONVENTIONAL


Experiment materials and methods

- 36 Holstein cows (14 primiparous, 22 multiparous)
- Randomized complete block design
 - 2-week common covariate diet
 - Followed by 6-week treatment diet
- Cows milked 3 × per day and individually fed in a tie-stall barn
- Extreme processed alfalfa silage was compared to a nonprocessed control alfalfa silage


Ingredient composition

Ingredient, % of DM	Control	ExMP
Control alfalfa silage	29.0±1.27	0
ExMP alfalfa silage	0	27.9±0.66
BMR corn silage	31.0±0.70	31.4±0.61
High-moisture corn	19.9±0.60	20.2±0.41
Canola meal	7.9±0.12	8.7±0.09
Roasted soybeans	4.0±0.08	4.1±0.05
Soybean hulls	5.5±0.08	5.6±0.09
Mineral and vitamins	2.7±0.08	2.7±0.03

¹Control = control diet; ExMP = extreme mechanical processed diet.


Nutrient composition

Nutrient, % of DM	Control	ExMP
DM	44.9	44.3
СР	16.7	16.3
NDF	29.3	28.8
Forage NDF	21.4	20.7
ADF	20.9	21.1
Starch	27.6	27.9
Ether extract	3.70	3.74
Ash	6.0	5.9

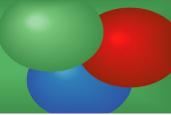
¹Control = control diet; ExMP = extreme mechanical processed diet.

Total tract nutrient digestibility

Item, % of DM	Control	ExMP	SEM	P-value
DM	67.7	72.4	0.80	<0.01
OM	67.8	72.3	0.80	< 0.01
NDF	39.9	51.8	1.64	< 0.01
ADF	44.4	49.5	1.55	0.03
СР	67.8	71.2	0.79	0.01
Starch	96.6	97.2	0.21	0.03

¹Control = control diet; ExMP = extreme mechanical processed diet.

Lactation performance


Item, % of DM	Control	ExMP	SEM	P-value
Intake, kg/d	28.0	27.3	0.30	0.13
Milk yield, kg/d	46.1	46.8	0.41	0.21
Fat, %	3.81	3.93	0.04	0.03
Fat, kg/d	1.75	1.83	0.04	0.01
Protein, %	3.09	3.10	0.01	0.42
Protein, kg/d	1.42	1.45	0.01	0.13
ECM, kg/d	48.0	49.5	0.46	0.03
ECM/DMI	1.71	1.81	0.02	0.01

¹Control = control diet; ExMP = extreme mechanical processed diet.

Use of cover crops in dairy cow diets

Current cover crop experiments at DFRC

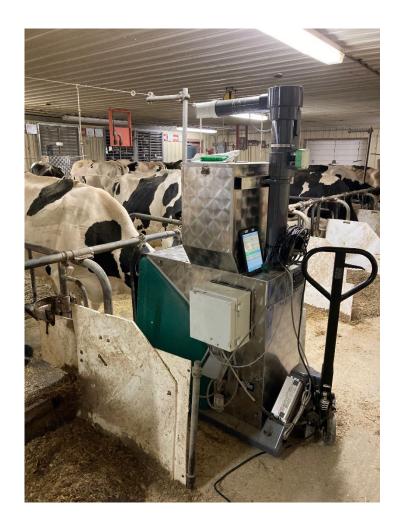
Rye - monoculture

Rye-vetch-camelina 3-way mix

Triticale-vetch-camelina 3-way mix

Triticale - monoculture

Nutrient composition of cover crops - DFRC


		Rye	Triticale	Rye	Triticale
Nutrient, % of DM	Alfalfa	mono	mono	3-way ¹	3-way ¹
СР	23.9	13.0	11.5	13.6	11.1
aNDFom	35.4	57.7	52.5	53.9	50.7
ADF	30.4	38.5	34.5	37.3	35.5
Lignin (ADL)	5.84	1.95	1.80	1.87	2.73
NDFD30, % of NDF	47.7	74.0	73.8	71.3	68.2
Sugar	3.07	2.58	2.44	2.95	3.44
Starch	2.68	0.37	0.31	0.30	0.44
Fat	4.08	4.59	6.00	4.91	5.16
Ash	10.31	9.97	8.93	9.38	8.84

¹3-way mix included rye or triticale with hairy vetch and camelina.

Rye-mono and Rye-3-way were harvested May 12th 2023 & Triticale-mono and Trit-3-way were harvested May 23td 2023

Recent experiment at DFRC

- Experiment Inclusion of cover crops in high production lactating dairy cow diets.
 - 65 Holstein cows at peak milk production (60-150 DIM).
 - Cows were fed 1 of 5 diets:
 - Control traditional corn silage/alfalfa silage (AS) diet
 - Rye mono included at 15% of the diet (replacing AS)
 - Triticale mono included at 15% of the diet
 - Rye 3-way included at 15% of the diet
 - Triticale 3-way included at 15% of the diet
 - Fed diets for 8 weeks to determine effects of cover crop silage on intake, milk yield, milk composition, nutrient digestibility, and methane production.

Ingredient composition of diets - DFRC

		Rye	Triticale	Rye	Triticale
Nutrient, % of DM	Control	mono	mono	3-way ¹	3-way ¹
Corn silage	30	30	30	30	30
Alfalfa silage	30	15	15	15	15
Cover crop silage	0	15	15	15	15
High-moisture corn	19	19	19	19	19
Canola meal	5	7	8	7	8
Soybean hulls	4	2	1	2	1
Roasted soybeans	4	4	4	4	4
Expeller SBM	4	4	4	4	4
Minerals and vit.	2.5	2.5	2.5	2.5	2.5
GreenFeed pellets	1.5	1.5	1.5	1.5	1.5

¹3-way mix included rye or triticale with hairy vetch and camelina.

Nutrient composition of diets - DFRC

		Rye	Triticale	Rye	Triticale
Nutrient, % of DM	Control	mono	mono	3-way ¹	3-way ¹
СР	16.8	16.2	16.3	16.3	16.3
aNDFom	29.5	31.4	30.2	30.8	29.9
ADF	22.6	22.2	21.3	22.0	21.4
Lignin (ADL)	3.03	2.46	2.51	2.45	2.64
Starch	24.6	24.6	24.6	24.6	24.7
Ether extract	4.8	4.7	4.9	4.7	4.8
Ash	5.7	5.6	5.5	5.6	5.5

¹3-way mix included rye or triticale with hairy vetch and camelina.

Preliminary results!



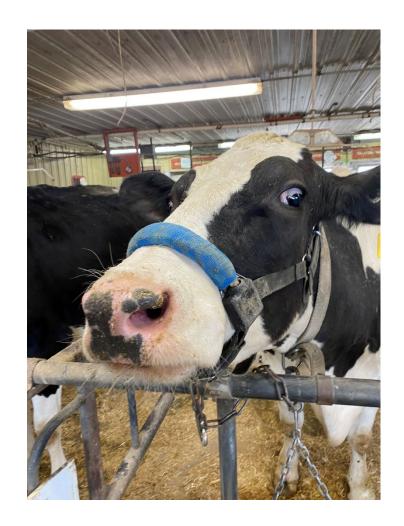
ltem	Control	Rye mono	Triticale mono	Rye 3-way ¹	Triticale 3-way ¹	SEM	P-value
DMI, kg/d	24.2	23.5	23.8	23.8	24.3	0.32	NS
Milk, kg/d	39.3	38.4	38.6	38.8	39.6	0.48	NS
Fat, %	4.16	4.11	4.23	4.20	4.15	0.05	NS
Protein, %	3.02	3.09	3.12	3.02	3.05	0.03	Con vs CC ^T Mono vs 3-way
Total solids, %	13.08	13.04	13.23	13.10	13.09	0.06	NS
MUN, mg/dl	12.6	12.1	12.1	12.3	11.9	0.17	Con vs CC

 $^{^{1}}$ 3-way mix included rye or triticale with hairy vetch and camelina.

P-values < 0.05 unless noted with a superscript T, 0.05 < P < 0.10.

Preliminary results!

		Rye	Triticale	Rye	Triticale		
Item	Control	mono	mono	3-way ¹	3-way ¹	SEM	P-value
Fat yield, kg/d	1.63	1.57	1.63	1.62	1.63	0.02	NS
Prot yield, kg/d	1.18	1.18	1.20	1.17	1.20	0.02	Rye vs trit [⊤]
ECM, kg/d	42.5	41.4	42.5	42.0	42.7	0.49	Rye vs trit [⊤]
FE ² (ECM/DMI)	1.75	1.77	1.76	1.78	1.77	0.024	NS


¹3-way mix included rye or triticale with hairy vetch and camelina.

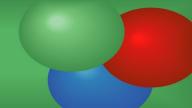
²FE = Feed efficiency.

P-values < 0.05 unless noted with a superscript T, 0.05 < P < 0.10.

Recent experiment at DFRC - Part II

- Experiment 2 Inclusion of cover crops in early lactation dairy cow diets.
 - 80 Holstein cows enrolled at week 3 (23±3 DIM).
 - Cows were fed 1 of 5 diets:
 - Control traditional corn silage/alfalfa silage (AS) diet
 - Rye mono included at 10% of the diet (replacing AS)
 - Triticale mono included at 10% of the diet
 - Rye 3-way included at 10% of the diet
 - Triticale 3-way included at 10% of the diet
 - Diets formulated to be iso-energetic and isonitrogenous at 18% CP, 30% NDF, 26% starch (DM basis).
 - Fed diets for 10 weeks to determine effects of cover crop silage on intake, milk yield, milk composition, nutrient digestibility, and methane production.

Recent experiment at DFRC – Part II



SUMMARY:

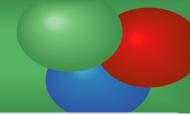
- Intake did not differ between treatments
- Average milk yield was greater for cows fed Rye diets (53.5 kg/d) vs. Trit diets (48.6 kg/d)
- Milk protein % was greater for cows fed Trit diets (3.05%) vs. Rye diets (2.92%)

• CONCLUSION:

 Cover crops can successfully be fed at 10% of the diet (DM basis) in early lactation and at least 15% of the diet in mid to late lactation.

3. Challenges and Opportunities

Challenges and Opportunities



Challenges

 Increasing silage in diets may decrease intake which may or may not result in reduced performance, however....

Opportunities

- Increasing silages in diets have been shown to increase feed conversion efficiency.
- Processing of forages can improve digestibility resulting in improved productivity.
- Alternative forages such as cover crops can successfully replace traditional forages without decreasing production.

QUESTIONS?

Leading the world in integrated dairy forage systems research.

U.S. Dairy Forage Research Center

www.ars.usda.gov/mwa/madison/dfrc

Increasing forage inclusion in dairy cow diets

Improving feed conversion efficiency with silage

Impact of increasing forage (70% corn silage:30% alfalfa silage)

			Contrast			
Item	42F	50F	58F	66F	SEM	P^{a}
DMI, kg	28.0	27.0	25.8	24.8	0.69	L
Milk, kg	40.1	40.4	40.8	39.1	1.12	NS
ECM, kg/d	38.0	38.4	39.5	38.7	1.23	NS
FE (ECM/DMI)	1.36	1.44	1.54	1.57	0.047	L

^a L=Linear response (*P*<0.05).

Schuler et al., 2013